Поиск в глубину
Это один из основных алгоритмов на графах.
Это один из основных алгоритмов на графах.
В результате поиска в глубину находится лексикографически первый путь в графе.
Алгоритм работает за O(N+M).
Применения алгоритма
- Поиск любого пути в графе.
- Поиск лексикографически первого пути в графе.
- Проверка, является ли одна вершина дерева предком другой:
- Задача LCA (наименьший общий предок).
- Топологическая сортировка:
- Проверка графа на ацикличность и нахождение цикла
- Поиск компонент сильной связности:
- Поиск мостов:
Реализация
vector < vector<int> > g; // граф
int n; // число вершин
vector<int> color; // цвет вершины (0, 1, или 2)
vector<int> time_in, time_out; // "времена" захода и выхода из вершины
int dfs_timer = 0; // "таймер" для определения времён
void dfs (int v) {
time_in[v] = dfs_timer++;
color[v] = 1;
for (vector<int>::iterator i=g[v].begin(); i!=g[v].end(); ++i)
if (color[*i] == 0)
dfs (*i);
color[v] = 2;
time_out[v] = dfs_timer++;
}
Это наиболее общий код. Во многих случаях времена захода и выхода из вершины не важны, так же как и не важны цвета вершин (но тогда надо будет ввести аналогичный по смыслу булевский массив used). Вот наиболее простая реализация:
vector < vector<int> > g; // граф
int n; // число вершин
vector<char> used;
void dfs (int v) {
used[v] = true;
for (vector<int>::iterator i=g[v].begin(); i!=g[v].end(); ++i)
if (!used[*i])
dfs (*i);
}